Polynomial-Degree-Robust A Posteriori Estimates in a Unified Setting for Conforming, Nonconforming, Discontinuous Galerkin, and Mixed Discretizations

نویسندگان

  • Alexandre Ern
  • Martin Vohralík
چکیده

We present equilibrated flux a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed finite element discretizations of the two-dimensional Poisson problem. Relying on the equilibration by the mixed finite element solution of patchwise Neumann problems, the estimates are guaranteed, locally computable, locally efficient, and robust with respect to polynomial degree. Maximal local overestimation is guaranteed as well. Numerical experiments suggest asymptotic exactness for the incomplete interior penalty discontinuous Galerkin scheme.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Guaranteed, Locally Space-Time Efficient, and Polynomial-Degree Robust a Posteriori Error Estimates for High-Order Discretizations of Parabolic Problems

We consider the a posteriori error analysis of approximations of parabolic problems based on arbitrarily high-order conforming Galerkin spatial discretizations and arbitrarily highorder discontinuous Galerkin temporal discretizations. Using equilibrated flux reconstructions, we present a posteriori error estimates for a norm composed of the L2(H1)∩H1(H−1)norm of the error and the temporal jumps...

متن کامل

Optimal and Robust A Posteriori Error Estimates in L

Optimal a posteriori error estimates in L∞(0, T ; L(Ω)) are derived for the finite element approximation of Allen-Cahn equations. The estimates depend on the inverse of a small parameter only in a low order polynomial and are valid past topological changes of the evolving interface. The error analysis employs an elliptic reconstruction of the approximate solution and applies to a large class of...

متن کامل

Quasi-optimal and robust a posteriori error estimates in L∞(L2) for the approximation of Allen-Cahn equations past singularities

Quasi-optimal a posteriori error estimates in L∞(0, T ;L2(Ω)) are derived for the finite element approximation of Allen-Cahn equations. The estimates depend on the inverse of a small parameter only in a low order polynomial and are valid past topological changes of the evolving interface. The error analysis employs an elliptic reconstruction of the approximate solution and applies to a large cl...

متن کامل

A Posteriori Error Estimation Based on Potential and Flux Reconstruction for the Heat Equation

We derive a posteriori error estimates for the discretization of the heat equation in a unified and fully discrete setting comprising the discontinuous Galerkin, finite volume, mixed finite element, and conforming and nonconforming finite element methods in space and the backward Euler scheme in time. Our estimates are based on a H-conforming reconstruction of the potential, continuous and piec...

متن کامل

A unified framework for a posteriori error estimation for the Stokes problem

In this paper, a unified framework for a posteriori error estimation for the Stokes problem is developed. It is based on [H 0 (Ω)] -conforming velocity reconstruction and H(div, Ω)-conforming, locally conservative flux (stress) reconstruction. It gives guaranteed, fully computable global upper bounds as well as local lower bounds on the energy error. In order to apply this framework to a given ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Numerical Analysis

دوره 53  شماره 

صفحات  -

تاریخ انتشار 2015